September 27, 2021

SpywareNews.com

Dedicated Forum to help removing adware, malware, spyware, ransomware, trojans, viruses and more!

Bounded Collusion ABE for TMs from IBE, by Rishab Goyal and Ridwan Syed and Brent Waters

We give an attribute-based encryption system for Turing Machines that is provably secure assuming only the existence of identity-based encryption (IBE) for large identity spaces. Currently, IBE is known to be realizable from most mainstream number theoretic assumptions that imply public key cryptography including factoring, the search Diffie-Hellman assumption, and the Learning with Errors assumption.
Our core construction provides security against an attacker that makes a single key query for a machine $T$ before declaring a challenge string $w^*$ that is associated with the challenge ciphertext. We build our construction by leveraging a Garbled RAM construction of Gentry, Halevi, Raykova, and Wichs; however, to prove security we need to introduce a new notion of security called iterated simulation security.
We then show how to transform our core construction into one that is secure for an a-priori bounded number $q = q(lambda)$ of key queries that can occur either before or after the challenge ciphertext. We do this by first showing how one can use a special type of non-committing encryption to transform a system that is secure only if a single key is chosen before the challenge ciphertext is declared into one where the single key can be requested either before or after the challenge ciphertext. We give a simple construction of this non-committing encryption from public key encryption in the Random Oracle Model. Next, one can apply standard combinatorial techniques to lift from single-key adaptive security to $q$-key adaptive security.